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Introduction

Predicting cropland latent heat flux (LHF) from commonly measured
low-cost meteorological parameters (MPs) like net solar radiation, soil
& air temperature, vapor pressure deficit, wind speed, and canopy tem-
perature of the crops is essential for modeling crop production and
managing water resources economically.

Within an agricultural ecosystem, various types of energy transport
processes exist between the crop surfaces and atmospheric micro-MPs.

This energy balance enclosure (EBC) is based on the energy conserva-
tion principle and equalizes the available energy.

The above EBC over a cropland monitoring site, situated at the earth’s
surface, is closely related to the overlying atmospheric boundary layer.
Moreover, this EBC and its turbulent exchange are governed by the
micro-climate of the plant communities.

The incoming solar radiation, the latent and sensible heat fluxes are
the most vital processes in this land-atmosphere exchanges.

Saon Banerjee et.al. SPIE PHOTONICS EUROPE 2020 April 9, 2020 3 / 23



4/23

Introduction (contd..)

The growth, development, and yield of crops are governed by the in-
teractions between the energy and water balance in the crop-fields.

The net radiation energy is partitioned into latent energy during the
day time and is mainly concentrated in the paddy fields.

The exchange of latent energy in the vegetation-atmosphere interface
is the most crucial factor in the crop production system.

Quantitative understanding and accurate estimation of all the fluxes,
including LHF over cropland surfaces, plays a vital role in the devel-
opment of agricultural production by precise irrigation planning and
proper water utilization policy due to the close correlation between the
rate of evapotranspiration and the water depletion of the soil.

Usually, the radiometric surface temperatures of a crop canopy are not
unique due to their inherent complicated structure and uneven canopy
surface temperature distribution.
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Introduction (contd..)

The ambient air temperature, humidity, and wind profile analysis are
essential to evaluate the energy balance components over a crop-field,
which requires the establishment of flux towers.

In developing countries like India, the network of such eddy/flux towers
is not feasible due to the enormous deployable cost involved.

As such, studies envisaging the causal interdependence between the
micro-MPs mentioned above, and the LHF is essential for data-driven
modeling and LHF prediction.

Further, LHF trend can indicate the drift in the actual evapotranspira-
tion amount from a crop-field.
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Objectives

The present study aims to determine the LHF fluctuation variability
from a set of low-cost micro-meteorological parameters via deep rein-
forcement learning (deep-RL).

Our approach is model-free and uses fewer micro-MPs as input and thus
minimizes the effect of uncertainties caused by the underlying model
and inherent input parameters.

The proposed scheme is data-driven instead of physics-based or em-
pirical modeling. It holds economical significance as it is a trade-off
between the prediction error and reduces the input micro-MPs acqui-
sition cost.

The deep-RL framework envisages domain-independent modeling for
continual adaptation of the profoundly changing non-stationary envi-
ronments like atmosphere and cropland ecosystem.

The workflow is illustrated in the next slide.
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Pipeline of the proposed framework

Figure: Workflow of the proposed methodology
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Meteorological Data Collection

Study Area and Field Experiment Details:
The experimental farm area is located in the Bidhan Chandra Krishi
Viswavidyalaya (BCKV), State Agricultural University, Kalyani,
West Bengal (WB), India, located near the Tropic of Cancer (Lat-
itude: 22◦57′N, Longitude: 88◦20′E ). The cropland lies in the sub-
tropical climate zone and receives an average annual rainfall of
1467.5mm, with a mean temperature ranging from 15.5◦C to 21.3◦C
in winter, and a maximum of (27.6◦ to 31.7◦C) during May. Three
important non-rice crops of the region, namely the yellow Sarson
(mustard), potato, and green-gram, owing to similar energy bal-
ance partitioning patterns, are considered for analysis in the present
study.
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Meteorological Data Collection (contd..)

Meteorological Parameters & Data Collection:
The ISR is measured with the help of a net Pyrradiometer (Make
National Instrument and Calibrated by IMD, Pune).

The canopy temperature is measured with the help of an infrared
thermometer (Model No. TES 1326/1327).

The soil temperature is measured at hourly intervals in between the
two rows of the crops with two soil thermometers inserted into the
soil at an angle of 60◦, and taken from a height of 5cm and 15cm,
respectively, from the ground surface.

The Assmann psychrometer is used to measure the air temperature
& vapor pressure deficit at a height of 5cm and 15cm, respectively.

The wind speed is measured with a hand-held anemometer.
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Meteorological Data Collection (contd..)

Figure: Micro-MP measuring instrument setup from the study area.
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Meteorological Data Collection (contd..)

Figure: Statistics of the acquired meteorological parameters.
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Reinforcement Learning for LHF Trend Estimation

Problem Definition via Reinforcement Learning

As it can be seen from the previous slide, where the different micro-MP
feature values are designated as fi ∈ F = f1, ..., f6.

Let us define y ∈ Y , which is the output response variable denoting
the LHF trend, which may be either positive or negative.

A vector x = [x1 x2 x3 x4 x5 x6 x7]T , where xi is a value of the
meteorological parameter fi .

Thus (x , y) ∈ D together constitute a sample being drawn from a
data distribution (D). This D contains the measured LHF (y) and the
predictor variable (x).

A function mapping, c : F −→ R is defined which associates a feature
f with a real-valued cost c(f ), and a cost scaling factor λ is defined,
where λ ∈ [0, 1].
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RL for LHF Trend Estimation (Contd..)

The classification model encompasses a set of coupled parametric func-
tions and the aim is to learn the model parameters θ, which minimizes
the mean classification error, and a corresponding λ scaled expected
feature cost.

Here, yθ : X −→ Y , where yθ is the misclassification cost, and zθ : X −→
℘(F ) denotes the used features in the process. The overall problem
can be expressed as:

argmin
θ

=
1

D

∑
(x ,y)∈D

l(yθ(x), y) + λ
∑

f ∈zθ(x)

c(f ))

 (1)

For our deep-RL methodology, we have followed the strategy as given
in 1 and followed its implementation from 2.

1Janisch, Jaroḿır, Tomáš Pevný, and Viliam Lisý. ”Classification with costly features
using deep reinforcement learning.” Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 33. 2019.

2https://github.com/jaromiru/cwcf
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RL for LHF Trend Estimation (Contd..)
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Figure: The dependence of trend estimation accuracy for different λ values.
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RL for LHF Trend Estimation (Contd..)

The above problem statement can be reformulated as a sequential
decision-making problem, where an agent analyze a feature at each
step to estimate the trend output.

For a conventional RL setting, an agent explores its environment through
a series of actions and observes the relative change in the environment
states at each step, which in turn gives a reward based on the action
taken.

In our case, this environment is considered as a partially observable
Markov decision process (POMDP) due to its state-transition dynamics
representation.

A sample classification from the experimentally collected dataset con-
cludes each episode.
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Q-learning

In Q-learning, we try to optimize an optimal function Q∗, which charac-
terizes the anticipated discounted reward and action a pair in the state s
via some optimal policy update. This is achieved via Bellman equation as
discussed below:

Q ∗ (s, a) =
E

s ′ ∼ t(s, a)

[
r(s, a, s ′) + γ

max
a′

Q∗(s ′, a′)

]
(2)

Where, r(s, a, s ′) signifies the expected reward, and γ ≤ 1 denotes the
discount factor. By joint optimization, for all the actions a, a neural network
characterized by the parameters θ and taking a state s gives an estimate
of Qθ(s, a). Deep Q-learning algorithms include a discrete target network
having parameters φ, and it follows with a delay. More details on Q-learning
and deep Q-learning can be found from the references given at the end.
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Experimental Result and Discussion

Proposed method envisages an adaptive micro-MP selection strategy.
Dataset normalization via mean & standard deviation of the MPs.
The split-ratio of the dataset for training, validation, and testing sets
is 0.6:0.2:0.2. Each algorithm is repeatedly run 100 times, and the
mean performance accuracy is depicted in the figure below.
Prediction accuracy of 73.51% using Q-learning (linear approximation).
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Figure: Comparison of the 3 explored RL models for the LHF trend estimation.
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Experimental Result and Discussion (contd..)

All the three non-rice crops have similar energy balance partitioning
patterns and therefore clubbed together for the presented analysis.

Relative change in daily micro-MP values and the corresponding change
in the ground measurements of LHF are used for RL model training.

The estimated LHF trends are in good agreement over the studied crop-
land monitoring sites, signifying the potency of the proposed methods
for evaluating the cropland LHF over diverse climatic conditions.

Not all micro-MPs are important for LHF prediction.

Comparative evaluation with other RL variants: (i) RL with a complete
agent, and (ii) Q-learning with neural networks.

The utility of data-driven deep RL as a trade-off between the prediction
error and reduce the input micro-MPs acquisition cost holds economical
significance over physics-based and empirical models.

Our approach is model-free and uses fewer micro-MPs as input and thus
minimizes the effect of uncertainties caused by the underlying model
and inherent input parameters.
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Conclusion

Problem reformulation as a sequential decision making problem, where each
of the low-cost MPs is acquired for a cost.
Objective: Short-term LHF variability forecasting via joint minimization of
the LHF trend prediction error and the relative MP measurement cost.
We explore the following Deep RL variants:

RL with all the extensions of a complete agent.

RL via Q-learning with linear approximation.

RL via Q-learning with neural networks.

Concluding Remark: Domain-independent prediction for continual adap-
tation of the profoundly changing non-stationary environments like atmo-
sphere and cropland ecosystem.
Futuristic scope: We are expanding our dataset to include other crops and
exploring state-of-the-art machine learning and deep learning-based regres-
sion methods.
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